Main Article Content

Abstract

Alnus subcordata and Acer velutinum are two valuable, dominant, and endemic species in the Hyrcanian forests. There are fast-growing species and significant diffuse-porous hardwood in afforestation and reforestation. One-year old seedlings of both species were exposed to four water shortage treatments (100, 75, 50 and 25% of field capacity (FC)) for 12 weeks. Thereafter, their morphological characteristics such as height and basal area, total and organ biomass (root, stem, and leaf), leaf area (LA), specific leaf area (SLA), leaf area ratio (LAR), as well as physiological and biochemical characteristics such as relative water content (RWC), content of chlorophyll, free proline and malondialdehyde (MDA), and superoxide dismutase (SOD) and peroxidase (POD) activity were measured. The results showed that when exposed to reduced water availability, plant height, basal diameter, total and organ biomass, LA, LAR, RWC and chlorophyll content decreased, but their proline concentration, MDA content, SOD, and POD activity increased in both species. The root to shoot ratio (R/S) and root mass ratio (RMR) increased at 50 and 25% FC treatments in A. subcordata, whereas no significant difference was found in A. velutinum under drought treatments. SLA increased significantly at 50% FC in A. velutinum and decreased in A. subcordata under drought treatments compared to control treatment. A. velutinum showed more proline content, RWC, POD, and lower increase in MDA content than A. subcordata under moderate treatment. Therefore, A. velutinum appears to possess a better mechanism to cope with drought stress.

Keywords

Alnus subcordata Acer velutinum antioxidant enzymes biomass growth water deficit

Article Details

How to Cite
Ravanbakhsh, M., Babakhani, B., Ghasemnezhad, M., Serpooshan, F., & Biglouie, M. H. (2023). Acer velutinum Bioss. (velvet maple) seedlings are more tolerant to water deficit than Alnus subcordata C.A. Mey. (Caucasian alder) seedlings. Acta Botanica Croatica, 82(1). https://doi.org/10.37427/botcro-2022-029

References

  1. Abdolahi, A., Ali Arab, A. R., Parhizkar, P., Pourmalekshah, A. A. M. A., 2017: Effect of gap size and position within gaps on growth characters and survival of Chestnut-leaved oak (Quercus castaneifolia C. A. Mey.), Cappadocian maple (Acer cappadocicum Gled.) and Caucasian alder (Alnus subcordata C. A. Mey.). Iranian Journal of Forest and Poplar Research 25, 275–285.
  2. Abid, M., Ali, S., Qi, L. K., Zahoor, R., Tian, Z., Jiang, D., Snider, J. L., Dai, T., 2018: Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L .). Scientific Reports 8, 4615. https://doi.org/10.1038/s41598-018-21441-7.
  3. Allahyari, M. S., Ghavami, S., Daghighi Masuleh, Z., Michailidis, A., Nastis, S. A., Masuleh, Z. D., Michailidis, A., Nastis, S. A., 2016: Understanding farmers’ perceptions and adaptations to precipitation and temperature variability: e vidence from Northern Iran. Climate 4, 58. https://doi.org/10.3390/cli4040058.
  4. Anjum, S. A., Xie, X. yu, Wang, L. chang, Saleem, M. F., Man, C., Lei, W., 2011: Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research 6, 2026–2032.
  5. Ashraf, M., Harris, P. J. C., 2013: Photosynthesis under stressful environments: an overview. Photosynthetica 51, 163–190. https://doi.org/10.1007/s11099-013-0021-6.
  6. Ashrafi, M., Azimi-Moqadam, M.R., Moradi, P., MohseniFard, E., Shekari, F., Kompany-Zareh, M., 2018: Effect of drought stress on metabolite adjustments in drought tolerant and sensitive thyme. Plant Physiology and Biochemistry 132, 391-399. https://doi.org/10.1016/j.plaphy.2018.09.009
  7. Attarod, P., Kheirkhah, F., Sigaroodi, S. K., Sadeghi, S. M. M., Dolatshahi, A., Bayramzadeh, V., 2017:Trend analysis of meteorological parameters and reference evapotranspiration in the Caspian region. Iranian Journal of Forest 9, 171–185.
  8. Bangar, P., Chaudhury, A., Tiwari, B., Kumar, S., Kumari, R., Bhat, K. V., 2019: Morphophysiological and biochemical response of mungbean [Vigna radiata (L.) Wilczek] varieties at different developmental stages under drought stress. Turkish Journal of Biology 43, 58-69. https://doi.org/10.3906/biy-1801-64.
  9. Barros, V., Melo, A., Santos, M. G. M. M. G. M. M. G. M., Nogueira, L., Frosi, G., Santos, M. G., 2020: Different resource-use strategies of invasive and native woody species from a seasonally dry tropical forest under drought stress and recovery. Plant Physiology and Biochemistry 147, 181–190. https://doi.org/10.1016/j.plaphy.2019.12.018.
  10. Bates, L.S., Waldren, R.A., Teare, I. D., 1973: Rapid determination of free proline for water-stress studies. Plant and Soil 39, 205-207.
  11. Bhusal, N., Lee, M., Reum Han, A., Han, A., Kim, H. S., 2020: Responses to drought stress in Prunus sargentii and Larix kaempferi seedlings using morphological and physiological parameters. Forest Ecology and Management 465, 118099. https://doi.org/10.1016/j.foreco.2020.118099.
  12. Chakhchar, A., Wahbi, S., Lamaoui, M., Ferradous, A., Mousadik, A. El, Ibnsouda-Koraichi, S., Filali-Maltouf, A., Cherkaoui, Modafar, E., El Modafar, C., 2015: Physiological and biochemical traits of drought tolerance in Argania spinosa. Journal of Plant Interactions 10, 252–261. https://doi.org/10.1080/17429145.2015.1068386.
  13. Dias, M. C., Azevedo, C., Costa, M., Pinto, G., Santos, C., 2014: Melia azedarach plants show tolerance properties to water shortage treatment: An ecophysiological study. Plant Physiology and Biochemistry 75, 123–127. https://doi.org/10.1016/j.plaphy.2013.12.014.
  14. Díaz-López, L., Gimeno, V., Simón, I., Martínez, V., Rodríguez-Ortega, W. M., García-Sánchez, F., 2012: Jatropha curcas seedlings show a water conservation strategy under drought conditions based on decreasing leaf growth and stomatal conductance. Agricultural Water Management 105, 48–56. https://doi.org/10.1016/j.agwat.2012.01.001.
  15. Du, N., Guo, W., Zhang, X., Wang, R., 2010: Morphological and physiological responses of vitex negundo L. var. heterophylla (Franch.) Rehd. to drought stress. Acta Physiologiae Plantarum 32, 839–848. https://doi.org/10.1007/s11738-010-0468-z.
  16. Du, L., Liu, H., Guan, W., Li, J., Li, J., 2019: Drought affects the coordination of belowground and aboveground resource-related traits in Solidago canadensis in China. Ecology and Evolution 9, 9948–9960. https://doi.org/10.1002/ece3.5536.
  17. Dulai, S., Molnár, I., Szopkó, D., Darkó, É., Vojtkó, A., Sass-Gyarmati, A., Molnár-Láng, M., 2014: Wheat-Aegilops biuncialis amphiploids have efficient photosynthesis and biomass production during osmotic stress. Journal of Plant Physiology 171, 509–517. https://doi.org/10.1016/j.jplph.2013.11.015.
  18. Fang, J., Wu, F., Yang, W., Zhang, J., Cai, H., 2012: Effects of drought on the growth and resource use efficiency of two endemic species in an arid ecotone. Acta Ecologica Sinica 32, 195–201. https://doi.org/10.1016/j.chnaes.2012.05.001.
  19. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S. M. A., 2009: Plant drought stress: Effects, mechanisms and management. In: Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C. (eds.) Sustainable Agriculture, 153–188. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2666-8_12.
  20. Gallé, A., Feller, U., 2007: Changes of photosynthetic traits in beech saplings (Fagus sylvatica) under severe drought stress and during recovery. Physiologia Plantarum 131, 412–421. https://doi.org/10.1111/j.1399-3054.2007.00972.x.
  21. Ge, Y., He, X., Wang, J., Jiang, B., Ye, R., , Lin, X., 2014: Physiological and biochemical responses of Phoebe bournei seedlings to water stress and recovery. Acta Physiologiae Plantarum 36, 1241–1250. https://doi.org/10.1007/s11738-014-1502-3.
  22. Geng, D.L., LU, L.Y., Yan, M.J, Shen, X.X., Jiang, L.J., Li, H.Y., Wang, L.P, Yan, Y., Xu, J.D, Li, C.Y., Yu, J.T., Ma, F.W., Guan, Q.M., 2019: Physiological and transcriptomic analyses of roots from Malus sieversii under drought stress. Journal of Integrative Agriculture 18, 1280–1294. https://doi.org/10.1016/S2095-3119(19)62571-2.
  23. Ghaffari, H., Tadayon, M.R, Nadeem, M., Cheema, M., Razmjoo, J., 2019: Proline-mediated changes in antioxidant enzymatic activities and the physiology of sugar beet under drought stress. Acta Physiologiae Plantarum 41, 23. https://doi.org/10.1007/s11738-019-2815-z.
  24. Ghorbani, M., Sohrabi, H., Sadati, S. E., Babaei, F., 2018: Productivity and dynamics of pure and mixed-species plantations of Populous deltoids Bartr. ex Marsh and Alnus subcordata C. A. Mey. Forest Ecology and Management 409, 890–898. https://doi.org/10.1016/j.foreco.2017.11.016.
  25. Giannopolitis, C. N., Ries, S. K., 1977: Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology 59, 309–314.
  26. Guo, X., Guo, W., Luo, Y., Tan, X., Du, N., Wang, R., 2013: Morphological and biomass characteristic acclimation of trident maple (Acer buergerianum Miq.) in response to light and water stress. Acta Physiologiae Plantarum 35, 1149–1159. https://doi.org/10.1007/s11738-012-1154-0.
  27. Guo, X., Luo, Y.-J.J., Xu, Z.-W.W., Li, M.-Y.Y., Guo, W.H., 2019: Response strategies of Acer davidii to varying light regimes under different water conditions. Flora 257, 151423. https://doi.org/10.1016/j.flora.2019.151423.
  28. Guo, Y.Y., Yu, H.Y., Yang, M.M., Kong, D.S., Zhang, Y.J., 2018: Effect of drought stress on lipid peroxidation, osmotic adjustment and antioxidant enzyme activity of leaves and roots of Lycium ruthenicum Murr. seedling. Russian Journal of Plant Physiology 65, 244–250. https://doi.org/10.1134/S1021443718020127.
  29. Jourgholami, M., Fathi, K., Labelle, E.R., 2020: Effects of litter and straw mulch amendments on compacted soil properties and Caucasian alder (Alnus subcordata) growth. New Forests 51, 349–365. https://doi.org/10.1007/s11056-019-09738-5.
  30. Khaleghi, A., Naderi, R., Brunetti, C., Maserti, B.E., Salami, S.A., Babalar, M., 2019: Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Scientific Reports 9, 19250. https://doi.org/10.1038/s41598-019-55889-y.
  31. Lei, Y., Yin, C., Li, C., 2006: Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiologia Plantarum 127, 182–191. https://doi.org/10.1111/j.1399-3054.2006.00638.x.
  32. Lichtenthaler, H. K., 1987: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology 148, 350–382.
  33. Liu, B., Liang, J., Tang, G., Wang, X., Liu, F., Zhao, D., 2019: Drought stress affects on growth, water use efficiency, gas exchange and chlorophyll fluorescence of Juglans rootstocks. Scientia Horticulturae 250, 230–235. https://doi.org/10.1016/j.scienta.2019.02.056.
  34. Medeiros, D.B., da Silva, E.C., Nogueira, R.J.M.C., Teixeira, M.M., Buckeridge, M.S., 2013: Physiological limitations in two sugarcane varieties under water suppression and after recovering. Theoretical and Experimental Plant Physiology 25, 213–222. https://doi.org/10.1590/s2197-00252013000300006.
  35. Meng, G.T., Li, G.X.,, He, L.P.,, Chai, Y., Kong, J.J., Lei, Y.B., 2013: Combined effects of CO2 enrichment and drought stress on growth and energetic properties in the seedlings of a potential bioenergy crop Jatropha curcas. Journal of Plant Growth Regulation 32, 542–550. https://doi.org/10.1007/s00344-013-9319-7.
  36. Mohammadkhani, N., Heidari, R., 2008: Effects of drought stress on soluble proteins in two maize varieties. Turkish Journal of Biology 32, 23–30.
  37. Naghdi, R., Solgi, A., Labelle, E.R., Zenner, E.K., 2016: Influence of ground-based skidding on physical and chemical properties of forest soils and their effects on maple seedling growth. European Journal of Forest Research 135, 949–962. https://doi.org/10.1007/s10342-016-0986-3.
  38. Naji, H.R., Nia, M.F., Kiaei, M., Abdul-Hamid, H., Soltani, M., & Faghihi, A., 2016: Effect of intensive planting density on tree growth, wood density and fiber properties of maple (Acer Velutinum Boiss.). iForest-Biogeosciences and Forestry 9, 325–329. https://doi.org/10.3832/ifor1333-008.
  39. Plewa, M.J., Smith, S.R., Wagner, E.D., 1991: Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 247, 57–64.
  40. Rahimi, D., Kartoolinejad, D., Nourmohammadi, K., Naghdi, R., 2016: Increasing drought resistance of Alnus subcordata C.A. Mey. seeds using a nano priming technique with multi-walled carbon nanotubes. Journal of Forest Science 62, 269–278. https://doi.org/10.17221/15/2016-JFS.
  41. Sjöman, H., Levinsson, A., Emilsson, T., Ibrahimova, A., Alizade, V., Douglas, P., Wiström, B., 2021: Evaluation of Alnus subcordata for urban environments through assessment of drought and flooding tolerance. Dendrobiology 85, 39-50. https://doi.org/10.12657/denbio.085.005
  42. Taleshi, H., Jalali S.G., Alavi, J., Hosseini, S.M., Naimi, B., 2018: Climate change impacts on the distribution of Oriental beech (Fagus orientalis Lipsky) in the Hyrcanian Forests of Iran. Iranian Journal of Forest 10, 251–266.
  43. Tariq, A., Pan, K., Olatunji, O.A., Graciano, C., Li, Z., Sun, F., Zhang, L., Wu, X., Chen, W., Song, D., Huang, D., Xue, T., Zhang, A., 2018: Phosphorous fertilization alleviates drought effects on Alnus cremastogyne by regulating its antioxidant and osmotic potential. Scientific Reports 8, 1–11 https://doi.org/10.1038/s41598-018-24038-2.
  44. Tavankar, F., Nikooy, M., Picchio, R., Bonyad, A., Venanzi, R., 2017: Effects of logging wounds on Caucasian alder trees (Alnus subcordata C.A. Mey.) in Iranian caspian forests. Croatian Journal of Forest Engineering 38, 73–82.
  45. Toscano, S., Farieri, E., Ferrante, A., Romano, D., 2016: Physiological and biochemical responses in two ornamental shrubs to drought stress. Frontiers in Plant Science 7, 645. https://doi.org/10.3389/fpls.2016.00645.
  46. Wang, S., Liang, D., Li, C., Hao, Y., Ma, F., Shu, H., 2012: Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks. Plant Physiology and Biochemistry 51, 81–89. https://doi.org/10.1016/j.plaphy.2011.10.014.
  47. Wu, F., Bao, W., Li, F., Wu, N., 2008: Effects of drought stress and N supply on the growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings. Environmental and Experimental Botany 63, 248–255. https://doi.org/10.1016/j.envexpbot.2007.11.002.
  48. Wu, J., Li, J., Su, Y., He, Q., Wang, J., Qiu, Q., Ma, J., 2017: A morphophysiological analysis of the effects of drought and shade on Catalpa bungei plantlets. Acta Physiologiae Plantarum 39, 80. https://doi.org/10.1007/s11738-017-2380-2.
  49. Wu, M., Zhang, W. H., Ma, C., Zhou, J. Y., 2013: Changes in morphological, physiological, and biochemical responses to different levels of drought stress in chinese cork oak (Quercus variabilis Bl.) seedlings. Russian Journal of Plant Physiology 60, 681–692 https://doi.org/10.1134/S1021443713030151.
  50. Yang, F., Miao, L.-F., 2010: Adaptive responses to progressive drought stress in two poplar species originating from different altitudes. Silva Fennica 44, 23–37.
  51. Ying, Y.Q., Song, L.L., Jacobs, D.F., Mei, L., Liu, P., Jin, S.H., Wu, J.S., 2015: Physiological response to drought stress in Camptotheca acuminata seedlings from two provenances. Frontiers in Plant Science 6, 361. https://doi.org/10.3389/fpls.2015.00361.
  52. Zhang, Y., Yu, T., Ma, W., Tian, C., Sha, Z., Li, J., 2019: Morphological and physiological response of Acer catalpifolium Rehd. seedlings to water and light stresses. Global Ecology and Conservation 19, e00660 https://doi.org/10.1016/j.gecco.2019.e00660.