Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, P. R. China
Han Wu
Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, P. R. China
Yan-Ling Li
yanlingli@ynu.edu.cn (Primary Contact)
Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, P. R. China
John Patrick Kociolek
Museum of Natural History and Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado - 80309, USA
Tab. 1.A chronological listing of genera based on species formerly in the genus Cymbella or closely related genera (Zhang et al. 2021). * indicates the genus may be more closely related to freshwater gomphonemoid diatoms.
Since the revision of Cymbella, a number of other new species have been described from China (summarized in Kociolek et al. 2020b, see also Li et al. 2019, Liu et al. 2020, Zhang et al. 2020). In southwestern China, specifically, Li et al. (2003a,b) described new species of Cymbella respectively from northwest Tibet and Qinghai Province. Gong and Li (2011) described a new species of Cymbella from the Yunnan Plateau. Hu et al. (2013) described three new species of Cymbella from the high altitude lakes of the Hengduan Mountains region. In the present paper, we describe one new Cymbella species from the Hengduan Mountains area based on light and scanning electron microscopical investigations and compare its morphology with similar species.
Material and methods
Samples were taken using a Kajak-type gravity core (Renberg and Hansson 2008) from the surface sediments of Lake Shadecuo (29°44′35.8″ N, 101°21′39.8″ E, Tab. 2), located in the eastern Hengduan Mountains region of Southwest China. The pH and specific conductivity of the lake water were measured in the field using a YSI 650 multi-parameter display system (650 MDS, YSI Incorporated 1700/1725 Brannum Lane, Yellow Springs, OH 45387 USA) with a 600 XL probe. Water samples were taken from 50 cm under the water surface. Transparency was estimated using a Secchi disk. Total nitrogen (TN) and total phosphorus (TP) were measured by a Shimadzu UV 2450 ultraviolet-visible spectrophotometer at Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, using the alkaline potassium persulfate digestion-UV spectrophotometric method (Nydahl 1978) and the ammonium molybdate spectrophotometry method (Ebina et al. 1983), respectively.
Lake Shadecuo
Latitude (°N)
29°44′35.8″
Longitude (°E)
101°21′39.8″
Altitude (m a.s.l.)
4428
Maximum depth (m)
8
pH
7.66
Secchi disk depth (m)
4.8
Total nitrogen (mg·L–1)
0.288
Total phosphorus (mg·L–1)
0.004
Conductivity (μs·m–1)
33
Tab. 2.Physical and chemical parameters in Lake Shadecuo.
Diatom samples were kept under 4 °C in the refrigerator before laboratory treatments. In the laboratory, the diatoms were treated with HCl and H2O2 (Battarbee 1986). Permanent slides were made from cleaned materials and mounted in Naphrax® for observation with light microscopy (Olympus, BX-51, DIC). Relative abundances of diatoms in the samples were determined with a count of 300 valves.
Cleaned materials were investigated with a Leo 1530 scanning electron microscope (SEM). Samples and slides are preserved in the Herbarium of Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, China.
Results
Taxonomy
Class Bacillariophyceae Haeckel 1878
Subclass Bacillariophycidae D.G. Mann in Round et al. 1990
Order Cymbellales D.G. Mann in Round et al. 1990
Family Cymbellaceae Greville 1833
Genus Cymbella C.A.Agardh 1830
Cymbella luoyulanae Y.Li sp. nov. Fig. 1 A-E; Fig. 1C is the holotype
LM (Fig. 1): Valves moderately dorsiventral. Dorsal margin strongly convex. Ventral margin concave, slightly tumid in middle. Valve ends slightly truncated and broadly rounded. Length 59-82 μm, width 16.0-18.5 μm, maximum length/width ratio ca. 4.5. Axial area moderately broad. Central area elliptical, about 1/4-1/3 of width of valve. Raphe distinctly lateral, abruptly reverse-lateral near proximal ends. Striae slightly radiate, becoming more radiate towards valve ends. 3-5 stigmata, some larger than others, occur ventrally from central nodule, distant from middle ventral striae. Striae 7-8/10 μm at centre becoming 10-12/10 μm towards apices, with 20-22 areolae in 10 μm.
In SEM external valve view (Fig. 2): Striae uniseriate, partly biseriate with elliptical and transapically oriented areolae. Areolae slit-like with apically-orientated openings in transapical striae (Fig. 2 A-F). Stigmata rounded, separated from the areolae at central area on ventral side. Small round depressions may occur on the dorsal side of the central area (Fig. 2 C, D). Raphe centrally located on the valve face in a narrow hyaline axial area with straight to slightly dorsally arched proximal ends (Fig. 2 A, B). External distal raphe ends deflected dorsally (Fig. 2 E, F); external proximal raphe ends dilated (Fig. 2 C, D). The apical pore fields present and comprised by a group of porelli, almost entirely on the valve mantle (Fig. 2 E, F).
Fig. 2.External valve view of Cymbella luoyulanae sp. nov. by scanning electron microscope. A, B – external view of an entire valve. C, D – external view of valve center, the proximal raphe endings and the very large central area with 4-5 stigmata. E, F – valve apices, striae with slit-like areolae, some of them biseriate, and pore field separated by the distal raphe fissures.
In SEM internal valve view (Fig. 3): Striae with internal areolae openings lack any occlusions (Fig. 3 A, B). The central area distinct, projecting internally, and lacking an intermissio. Stigma opening round, with a slight expanded depression evident on the central nodule. Stigmata lack any ingrowths or occlusion (Fig. 3 C, D). Distal raphe endings bent slightly towards the dorsal margin, terminating in helictoglossae. (Fig. 3 E, F).
Fig. 3.Internal valve view of Cymbella luoyulanae sp. nov. by scanning electron microscope.. A, B – internal view of entire valve. C, D – showing the valve centre and four big and one small stigmata as elongated furrows connected to the striae. E, F – internal view of valve apex with prominent helictoglossa deflecting to the dorsal side.
Type: – CHINA. Sichuan Province: Kangding City, Lake Shadecuo, 29°44′35.8″ N, 101°21′39.8″ E, elevation 4428 m a.s.l., samples collected by Dr. Yulan, Luo, 14th October 2017. Holotype Shadecuo 1-1 in Coll. Li Yanling, Yunnan University., Kunming, China. Fig. 1 is of the holotype.
Etymology: –The specific epithet ‘luoyulanae’ refers to the collector of the sample on which these observations are based.
Ecology
Cymbella luoyulanae has been observed in the surface sediment sample from Lake Shadecuo. In Lake Shadecuo, this species was associated with Cyclotella ocellataPantocsek (1902: 134) (20%), Achnanthidium minutissimum (Kützing) Czarnecki (Czarnecki 1994: 157) (15%), C. comensis Grunow in Van Heurck (1882, pl. 93, Fig. 3 E, F) (14%), Pseudostaurosira pseudoconstruens (Marciniak) Williames et Round (1987: 275) (15%), and Staurosirella pinnata (Ehrenberg) D.M.Williames et Round (1987: 274) (5%).
Discussion
The features found in Cymbella luoyulanae are compared to all other known species of the genus in Tab. 3. The taxon most similar to C. luoyulanae is C. heihainensis. The valves of this species are wider, have a larger central area, drop-like proximal raphe ends, and a higher number of areolae in 10 µm, distinguishing it from C. luoyulanae. Cymbella modicepunctata has larger valves with a more distinct central area, and fewer striae in 10 µm, distinguishing it from C. luoyulanae. Cymbella luoyulanae has stigmata that may vary in size along the ventral margin, while C. modicepunctata has uniformly-sized stigmata on the ventral side. The same stigmata feature of C. luoyulanae is also found in C. schimanskii Krammer and its variety var. excelsa (Meister) Krammer. In SEM view, C. schimanskii has Y-shaped areolae openings in the middle of the valve, which is different from the biseriate of C. luoyulanae, and they differ from C. luoyulanae by having larger valves, a smaller central area, and in the shape of the central pores (rounded vs expanded as in C. luoyulanae). Cymbella luoyulanae can be distinguished from C. asiatica by valve size and striae density. Cymbella asiatica varies between 50 and 105 µm in length and 14-18 µm in breadth, has no stigmata-like depressions on the dorsal side, and only 6-7 striae in 10 µm. Cymbella luoyulanae is also similar to C. arctissima Metzeltin, which can be distinguished from our new species which has dorsally deflected proximal raphe endings, is shorter (98-105 µm vs. 59-94 µm), and has a broader central area (2/3 width vs. 1/2 width).
ventral side:3-5 big andsome smaller,dorsal side: 0-3
ventral side:7-10 big andsome smaller,dorsal side: 0–5
ventral side:7-10
ventral side:4-6
ventral side:6-10 big andsome smaller,dorsal side:sometimes some
ventral side:6-8
Central area
1/2 width
1/2 width
2/3-3/4 width
1/2 width
1/3 width
2/3 width
Central pores of raphe
expandeddrop-like,slightly ventrallydeflected
expandeddrop-like,slightly ventrallydeflected
distinct, veryslightlyreverse-lateral
distinct, abruptlyreverse-lateral
small, slightlyreverse-lateral
small, dorsallydeflected
Tab. 3.Morphological characteristics of Cymbella luoyulanae sp. nov. and Cymbella species sharing similar morphological features.
Another member of the genus Cymbella, C. distalebiseriata Bing Liu et D.M. Williams in Liu et al. (2018: 41), was described from Hunan Province, China. Cymbella distalbiseriata shares the feature of having striae with uniseriate and partially biseriate striae. The only other species of Cymbella exhibiting (a few) biseriate striae include C. yakii Jüttner et Van de Vijver in Jüttner et al. (2010b), C. duplopunctata Krammer 2002 and C. buechleri Krammer 2002 (both described from a fossil deposit in western North America). Three of the five species exhibiting biseriate striae are found in Asia, and two have been described from China. The other two taxa with biseriate striae are known from a fossil deposit in western North America (apparently of Miocene age, see Krammer 2002, p. 109). These are distinct from one another in size, shape and other morphological features (Krammer 2002, Jüttner et al. 2010b, Liu et al. 2018). It is unclear if the possession of biseriate striae is a homologous feature for this group or not; formal phylogenetic analysis is required to understand character evolution in this regard. However, if the taxa with biseriate striae are indeed closely related among themselves and their distribution remains between Asia and western North America, it supports the notion, noted by Ehrenberg over 180 years ago (Ehrenberg 1849) and supported by additional diatom examples (Kociolek and Stoermer 1989, Kociolek et al. 2013, 2015, Genkal and Kulikovskiy 2016, Kociolek 2019) as well as some genera of higher plants (Xiang and Soltis 2001, Nie et al. 2006, Kadereit and Baldwin 2012), of there being a close relationship between the floras of these two areas.
Table Of Contents
Main Article Content
Abstract
This paper describes a new species of the genus Cymbella C.A. Agardh from an alpine lake in the Hengduan Mountains of southwestern China. A detailed morphological description of the new species, named Cymbellaluoyulanae sp. nov., is presented; the description is based on light and scanning electron microscopy. The main features of C. luoyulanae are strongly dorsiventral valves with strongly reverse-lateral raphe branches near the proximal ends, a large central area occupying approximately a half of the width with the valve and slit-like areolae comprising striae that may be unseriate or partially biseriate. The new species has morphological characteristics that resemble those of C. heihainensis Y.Li et Gong, C. modicepunctata Krammer and C. asiatica Metzeltin, Lange-Bertalot et Y.Li, but it differs from these three species in details of size, valve shape, striae density, central area, and number of stigmata.
Keywords
ChinaCymbelladiatomnew speciestaxonomySEM
Article Details
License
Copyright (c) 2021 Qi Liu, Han Wu, Yan-Ling Li, John Patrick Kociolek
Acta Botanica Croatica is an Open Access journal with minimal restrictions regarding content reuse. Immediately after publishing, all content becomes freely available to anyone for unlimited use and distribution, under the sole condition that the author(s) and the original source are properly attributed according to the Creative Commons Attribution 4.0 International License (CC BY 4.0).
CC BY 4.0 represents the highest level of Open Access, which maximizes dissemination of scholarly work and protects the rights of its authors. In Acta Botanica Croatica, authors hold the copyright of their work and retain unrestricted publishing rights.
By approving final Proof the authors grant to the publisher exclusive license to publish their article in print and on-line, in accordance with the Creative Commons Attribution (CC-BY-4.0) license.
How to Cite
Liu, Q., Wu , H. ., Li, Y.-L., & Kociolek , J. P. (2021). One new species of Cymbella C.A. Agardh (Bacillariophyta) from high altitude lakes in the Hengduan Mountains of Southwest China. Acta Botanica Croatica, 80(2), 184–190. https://doi.org/10.37427/botcro-2021-021